

E.e. >99% $[\alpha]_{D}^{20} = -40$ (*c* 2, CHCl₃) Source of chirality: biocatalytic reduction Absolute configuration: *S*

Gelson J. Andrade Conceição, Paulo J. S. Moran and J. Augusto R. Rodrigues*

OH

 $C_{10}H_{12}O_2$ (*R*)-1-Hydroxy-1-phenylbutan-2-one

TrO

BnH

Tetrahedron: Asymmetry 14 (2003) 43

E.e. = 98% $[\alpha]_D^{20} = -325$ (c 2, CHCl₃) Source of chirality: biocatalytic reduction Absolute configuration: R

Aymeric Bordier, Philippe Compain, Olivier R. Martin,* Kyoko Ikeda and Naoki Asano Tetrahedron: Asymmetry 14 (2003) 47

 $[\alpha]_D = +39$ (c 1, CHCl₃) Source of chirality: L-xylose Absolute configuration: 1S, 2S, 3R, 4S

C34H34O5 $3\text{-}O\text{-}Benzyl\text{-}1,2\text{-}O\text{-}isopropylidene-5\text{-}O\text{-}triphenylmethyl\text{-}\alpha\text{-}L\text{-}xylofuranose}$

Aymeric Bordier, Philippe Compain, Olivier R. Martin,* Kyoko Ikeda and Naoki Asano Tetrahedron: Asymmetry 14 (2003) 47

 $[\alpha]_{D} = +55$ (*c* 1, CHCl₃) Source of chirality: L-xylose and asymmetric nucleophilic addition Absolute configuration: 1S, 2S, 3R, 4S, 5S

 $C_{23}H_{29}NO_4$ 3-*O*-Benzyl-5-benzylamino-5,6-dideoxy-1,2-*O*-isopropylidene- α -L-glucofuranose Aymeric Bordier, Philippe Compain, Olivier R. Martin,* Kyoko Ikeda and Naoki Asano

 $[\alpha]_D = +55$ (*c* 1, CHCl₃) Source of chirality: L-xylose and asymmetric nucleophilic addition Absolute configuration: 2R, 3S, 4S, 5S

 $HO = \frac{5}{4/3} = \frac{Bn}{2} OH$ BnO

C₂₀H₂₅NO₃ N-Benzyl-3-O-benzyl-1,5-imino-1,5,6-trideoxy-L-glucitol

Aymeric Bordier, Philippe Compain, Olivier R. Martin,* Kyoko Ikeda and Naoki Asano Tetrahedron: Asymmetry 14 (2003) 47

 $[\alpha]_{D} = -12$ (*c* 1.6, MeOH) Source of chirality: L-xylose and asymmetric nucleophilic addition Absolute configuration: 2R, 3S, 4S, 5S

1,5-Imino-1,5,6-trideoxy-L-glucitol

C₆H₁₃NO₃

Me-HO----

Ashraf Ghanem and Volker Schurig*

Tetrahedron: Asymmetry 14 (2003) 57

Ee >99% $[\alpha]_D^{20} = +19.9 \ (c \ 1, \ CH_2Cl_2)$ Source of chirality: lipase-catalysed enantioselective acylation Absolute configuration: 2R

C10H12O

(R)-trans-4-Phenyl-3-butene-2-ol

Ashraf Ghanem and Volker Schurig*

OH

Tetrahedron: Asymmetry 14 (2003) 47

Ee >99%

 $[\alpha]_{D}^{20} = +74.2$ (c 1, CH₂Cl₂) Source of chirality: lipase-catalysed enantioselective hydrolysis Absolute configuration: 2*R*

C₁₂H₁₄O₂ (*R*)-*trans*-4-Phenyl-3-butene-2 acetate Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*

Tetrahedron: Asymmetry 14 (2003) 63

 $[\alpha]_{D}^{18} = +33.2$ (*c* 1.2, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 4*S*

 $\begin{array}{c} & & \\$

(4R)-Diethyl 4-acetyloxy-2-oxo-pentylphosphonate

 Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*
 Tetrahedron: Asymmetry 14 (2003) 63

 $[\alpha]_D^{18} = +17.5$ (c 0.85, CHCl₃)
 Source of chirality: enzymatic resolution

 Absolute configuration: 4R

 $C_{10}H_{19}O_5P$

 (4R)-Diethyl 4-hydroxy-2-oxo-5-hexenylphosphonate

Tetrahedron: Asymmetry 14 (2003) 63 Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan* $[\alpha]_{D}^{18} = +4.0 \ (c \ 0.6, \ CHCl_{3})$ Source of chirality: enzymatic resolution Absolute configuration: 4R P(OCH₂CH₃)₂ C11H21O6P

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*

Tetrahedron: Asymmetry 14 (2003) 63

 $[\alpha]_{D}^{18} = +11.5$ (*c* 0.6, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 4R

 $\begin{array}{c} \begin{array}{c} & & \\$

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*

Tetrahedron: Asymmetry 14 (2003) 63

$$\label{eq:source} \begin{split} & [\alpha]_{\rm D}^{18}\!=\!-1.3~(c~0.85,~{\rm CHCl_3}) \\ & {\rm Source~of~chirality:~enzymatic~resolution} \\ & {\rm Absolute~configuration:~}4S \end{split}$$

OAC O P(OCH₂CH₃)₂

C₁₂H₂₁O₆P (4S)-Diethyl 4-acetyloxy-2-oxo-5-hexenylphosphonate

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*Tetrahedron: Asymmetry 14 (2003) 63 $OH O \\ C_{12}H_{14}O_{2}$ E.e. = 99.1% $C_{12}H_{14}O_{2}$ Source of chirality: enzymatic resolution
Absolute configuration: 5S

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*Tetrahedron: Asymmetry 14 (2003) 63OHG $C_{13}H_{16}O_2$ $C_{13}H_{16}O_2$

onghui Zhang, Chengfu Z

(5S,1E)-5-Hydroxy-1-phenyl-1-hepten-3-one

C₁₄H₂₁O₅P (4*R*)-Diethyl 4-hydroxy-2-oxo-4-phenylbutylphosphonate

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan* $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{27} = +42.7 \ (e \ 1.55, CHCl_3) \\ Source \ of \ chirality: \ enzymatic \ resolution \\ Absolute \ configuration: \ 4R \end{bmatrix}$ $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{27} = +42.7 \ (e \ 1.55, CHCl_3) \\ Source \ of \ chirality: \ enzymatic \ resolution \\ Absolute \ configuration: \ 4R \end{bmatrix}$

A5

 $[\alpha]_{D}^{27} = +40.1$ (*c* 1.85, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 4R

(OCH₂CH₃)₂

$$\label{eq:constraint} \begin{split} &[\alpha]_{\rm D}^{25} = +69.2 \ (c \ 1.25, \ {\rm CHCl}_3) \\ & {\rm Source \ of \ chirality: \ enzymatic \ resolution} \\ & {\rm Absolute \ configuration: \ } 4R \end{split}$$

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*

Tetrahedron: Asymmetry 14 (2003) 63

(OCH₂CH₃)₂

 $[\alpha]_D^{25} = +74.7$ (c 1.5, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 4R

 $\label{eq:C14} C_{14}H_{20}ClO_5P$ (4R)-Diethyl 4-hydroxy-2-oxo-4-(2-chlorophenyl)
butylphosphonate

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan*

Tetrahedron: Asymmetry 14 (2003) 63

P(OCH₂CH₃),

 $[\alpha]_{D}^{27} = +68.7$ (*c* 0.7, CHCl₃) Source of chirality: enzymatic resolution Absolute configuration: 4R

C₁₄H₁₉Cl₂O₅P (4*R*)-Diethyl 4-hydroxy-2-oxo-4-(2,4-dichlorophenyl)butylphosphonate

C₁₇H₁₆O₂ (5*R*,1*E*)-5-Hydroxy-1,5-diphenyl-1-penten-3-one

OH

Yonghui Zhang, Chengfu Xu, Jinfeng Li and Chengye Yuan* $\begin{array}{c} \text{Tetrahedron: Asymmetry 14 (2003) 63} \\ \text{E.e.} = 98.0\% \\ [\alpha]_D^{27} = +121.2 \ (c \ 0.95, \ \text{CHCl}_3) \\ \text{Source of chirality: enzymatic resolution} \\ \text{Absolute configuration: } 5R \end{array}$

(5*R*,1*E*)-5-Hydroxy-5-(2-bromophenyl)-1-phenyl-1-penten-3-one

C15H14O3 (5R,1E)-5-Hydroxy-5-(2-furyl)-1-phenyl-1-penten-3-one

Source of chirality: enzymatic resolution Absolute configuration: 5R

C. Böhm, W. F. Austin and D. Trauner* E.e. >99.5% CH_3 •OAc HO (PLE) CH C10H18O3 (+)-(1R,2R,4S,5S)-4-Acetoxy-2,5-dimethyl-1-cyclohexanol

Tetrahedron: Asymmetry 14 (2003) 71

 $[\alpha]_{\rm D} = +48.0 \ (c \ 0.42, \ {\rm CH}_2{\rm Cl}_2)$ Source of chirality: enzymatic desymmetrization of centrosymmetric diacetate using pig liver esterase Absolute configuration: 1R,2R,4S,5S

Tetrahedron: Asymmetry 14 (2003) 79 Paul V. Murphy,* Ciaran McDonnell, Ludger Hämig, Duncan E. Paterson and Richard J. K. Taylor $[\alpha]_{\rm D} = -36.1 \ (c \ 1.0, \ {\rm CHCl}_3)$ Source of chirality: L-gluconolactone starting material OTBS Absolute configuration: L-gluco TBSO TBSO OTBS C30H66O6Si4 2,3,5,6-Tetra-O-(tert-butyldimethysilyl)-L-glucono-1,4-lactone Tetrahedron: Asymmetry 14 (2003) 79 Paul V. Murphy,* Ciaran McDonnell, Ludger Hämig, Duncan E. Paterson and Richard J. K. Taylor $[\alpha]_{\rm D} = +15.4$ (c 0.9, CHCl₃) TBSO OTBS Source of chirality: L-gluconolactone starting material OTBS ÓTBS C30H66O6Si4 1-(tert-Butyldimethylsilyloxy)-2,3,4-tri-O-(tert-butyldimethylsilyl)-1,6-anhydro-L-glucopyranose Tetrahedron: Asymmetry 14 (2003) 87 Yiu-Suk Lee, Yong-Ho Shin, Yong-Hyun Kim, Kee-Young Lee, Chang-Young Oh, Sung-Jae Pyun, Hyun-Ju Park, Jin-Hyun Jeong and Won-Hun Ham* $[\alpha]_{D}^{25}$ -3.7 (c 1.0, CHCl₃) Source of chirality: stereoselective intramolecular TBSO cyclization Absolute configuration: 4S,trans C18H27NO2Si (4S,trans)-4,5-Dihydro-4-(tert-butyl-dimethylsilanyloxymethyl)-2-phenyloxazoline Tetrahedron: Asymmetry 14 (2003) 87 Yiu-Suk Lee, Yong-Ho Shin, Yong-Hyun Kim, Kee-Young Lee,

3-((4*S*,*trans*)-4,5-Dihydro-4-methyl-2-phenyloxazol-5-yl)-heptadecan-3-one-16-ethylenacetal

Yiu-Suk Lee, Yong-Ho Shin, Yong-Hyun Kim, Kee-Young Lee, Chang-Young Oh, Sung-Jae Pyun, Hyun-Ju Park, Jin-Hyun Jeong and Won-Hun Ham*

HO N H $C_{20}H_{39}NO_2$ (+)-Spectaline $[\alpha]_{D}^{26}$ +8.8 (*c* 1.3, CHCl₃) Source of chirality: stereoselective intramolecular reductive amination Absolute configuration: 2*S*,3*S*,6*R*

Tetrahedron: Asymmetry 14 (2003) 95

H = Ph PhPhCH2 C = C OHNHP(O)Ph

 $(2S) \hbox{-} 1,1,3 \hbox{-} Triphenyl \hbox{-} 2-(N \hbox{-} diphenyl phosphinyl) amino-1-propanol$

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen,

Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Tetrahedron: Asymmetry 14 (2003) 95

Tetrahedron: Asymmetry 14 (2003) 95

$$\begin{split} Mp &= 233 \sim 236^{\circ}C\\ [\alpha]_{D}^{20} &= -28.7 \ (c \ 1.0, \ CHCl_{3})\\ Absolute \ configuration: \ 2S \end{split}$$

 $Mp = 223 \sim 225^{\circ}C$

 $[\alpha]_{D}^{20} = -31.1$ (*c* 1.0, CHCl₃) Absolute configuration: 2*S*

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

(2S)-1,1-Di(4-fluorophenyl)-2-(N-diphenylphosphinyl)amino-3-phenyl-1-propanol

c[']C PhCH₇

PhCH4

ŃHP(O)Ph

 $Mp = 218 \sim 220^{\circ}C$ $[\alpha]_{D}^{20} = -22.5 (c 0.4, CHCl_3)$ Absolute configuration: 2S

 $(2S) \hbox{-} 1, 1 \hbox{-} Di (4-methylphenyl) \hbox{-} 2- (N-diphenylphosphinyl) amino-3-phenyl-1-propanol$

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

$$Mp = 147 \sim 149^{\circ}C$$

[\$\alpha\$]_D^{20} = -69.5 (c 1.0, CH_2Cl_2)
Absolute configuration: 2S

 $(2S) \hbox{-} 3- Ethyl \hbox{-} 2- (N-diphenyl phosphiny lamino) \hbox{-} 1- phenyl \hbox{-} 3- pentanol$

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Tetrahedron: Asymmetry 14 (2003) 95

 $Mp = 68 \sim 70^{\circ}C$ [\$\alpha]_{D}^{20} = -57.0 (c 0.73, CH_{2}Cl_{2}) Absolute configuration: 2S

 $(2S) \hbox{-} 2- [\text{Di-}(4-fluorophenyl) hydroxymethyl] pyrrolidine$

(2S)-2-[Di-(4-methylphenyl)hydroxymethyl]pyrrolidine

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Tetrahedron: Asymmetry 14 (2003) 95

Tetrahedron: Asymmetry 14 (2003) 95

 $Mp = 93 \sim 94^{\circ}C$ $[\alpha]_{D}^{20} = -58.0 (c 1.0, CHCl_3)$ Absolute configuration: 2S

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Ph₂P = ()

OH

 $Mp = 158 \sim 160^{\circ}C$ $[\alpha]_{D}^{20} = -44.4 (c 1.1, CH_{2}Cl_{2})$ Absolute configuration: 2S

 $N\mbox{-Diphenylphosphinyl-} (2S)\mbox{-}2\mbox{-}[di(4\mbox{-}fluorophenyl)\mbox{hydroxymethyl}]\mbox{pyrrolidine}$

PhCl

Kangying Li, Zhenghong Zhou, Lixin Wang, Qifa Chen, Guofeng Zhao, Qilin Zhou and Chuchi Tang*

Tetrahedron: Asymmetry 14 (2003) 95

 $Mp = 158 \sim 160^{\circ}C$ $[\alpha]_{D}^{20} = -38.2 (c 1.1, CHCl_3)$ Absolute configuration: 2S

 $N\-Diphenylphosphinyl-(2S)\-2-[di(4-methylphenyl)hydroxymethyl]pyrrolidine and a statistical statist$

Sadagopan Raghavan* and S. C. Joseph

Tetrahedron: Asymmetry 14 (2003) 101

Ee = 100% $[\alpha]_D^{24} = +184.6 \ (c \ 1, \ CHCl_3)$ Source of chirality: asymmetric synthesis Absolute configuration: $1R_S$

 $C_{11}H_{12}O_2S$ 1(R_s)-(4-Methylphenylsulfinyl)-3-buten-2-ol

Sadagopan Raghavan* and S. C. Joseph

Tetrahedron: Asymmetry 14 (2003) 101

De >95% $[\alpha]_D^{24} = +134.0$ (c 1, acetone) Source of chirality: asymmetric synthesis Absolute configuration: $1R_8,2S$

 $C_{11}H_{14}O_2S$ 1(R_s)-(4-Methylphenylsulfinyl)-(2S)-3-buten-2-ol

Sadagopan Raghavan* and S. C. Joseph

Tetrahedron: Asymmetry 14 (2003) 101

De >95%

 $[\alpha]_D^{24} = -208.2$ (c 0.5, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: $4S_S, 2S, 3S$

 $C_{11}H_{15}BrO_3S$ 1-Bromo-4(S₈)-(4-methylphenylsulfinyl)-(2S,3S)-3-butane-2,3-diol

O Tol∽S ↓

OH Tol-S

Tol~S

 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ Ph_2P=O \end{array} \end{array}$

Sadagopan Raghavan* and S. C. Joseph

Tetrahedron: Asymmetry 14 (2003) 101

Tol-S

De >95% $[\alpha]_D^{24} = -202.3$ (*c* 1, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: *S*_S,4*S*,5*S*

 $\label{eq:C14H19} C_{14}H_{19}BrO_3S$ 4-Bromomethyl-2,2-dimethyl-5-(4-methyl-(S)-phenylsulfinylmethyl)-(4S,5S)-1,3-dioxolane

 $C_{35}H_{36}NOP$ (*S*,4*R*_p,13*S*_p)-4-Diphenylphosphino-13-(4-*tert*-butyloxazoline-2-yl)[2.2]paracyclophane

A17

 $C_{38}H_{34}NOP \\ (S,4S_p,13R_p)-4-Diphenylphosphino-13-(4-benzyloxazoline-2-yl)[2.2] paracyclophane$

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and
Xue-Long Hou*Tetrahedron: Asymmetry 14 (2003) 107 $(\alpha)_D^{20} = -23.3 \ (c \ 0.535, CHCl_3)$
Source of chirality: (R)-phenylglycinol

 $\label{eq:c37} C_{37}H_{32}NOP $$ (R,4R_p,13S_p)$-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] paracyclophane $$ Paracyclophane $$ (R,4R_p,13S_p)$-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] paracyclophane $$ (R,4R_p,13S_p)$-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] paracyclophane $$ (R,4R_p,13S_p)$-4-Diphenylphosphino-13-(4-phenylphosphino-1$

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and Xue-Long Hou*

Tetrahedron: Asymmetry 14 (2003) 107

 $[\alpha]_{D}^{20} = +46.7 \ (c \ 0.525, \ CHCl_{3})$ Source of chirality: (*R*)-phenylglycinol

 $\label{eq:c37} C_{37}H_{32}NOP $$ (R,4S_p,13R_p)-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] paracyclophane $$ Paracyclophane $$ (R,4S_p,13R_p)-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] $$ (R,4S_p,13R_p)-4-Diphenylphosphino-13-(4-phenyloxazoline-2-yl)[2.2] $$ (R,4S_p,13R_p)-4-Diphenylphosphino-13-(4-phenylp$

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and Xue-Long Hou*

Tetrahedron: Asymmetry 14 (2003) 107

R(C¦aH,CH,-o)

R(C^{¦|}₆H₄CH₃-*p*)₂

Xue-Long Hou*

R(C₆H₄MeO-p

 $[\alpha]_{D}^{20} = -58.8 \ (c \ 0.325, \ CHCl_3)$ Source of chirality: (*R*)-phenylglycinol

 $C_{39}H_{36}NOP \\ (R,4R_p,13S_p)-4-Di(o-toyl)phosphino-13-(4-phenyloxazoline-2-yl)[2.2]paracyclophane$

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and Xue-Long Hou*

Tetrahedron: Asymmetry 14 (2003) 107

 $[\alpha]_{D}^{20} = -29.5$ (*c* 0.40, CHCl₃) Source of chirality: (*R*)-phenylglycinol

 $C_{39}H_{36}NOP$ (*R*,4*R*_p,13*S*_p)-4-Di(*p*-toyl)phosphino-13-(4-phenyloxazoline-2-yl)[2.2]paracyclophane

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and

Tetrahedron: Asymmetry 14 (2003) 107

 $[\alpha]_{D}^{20} = -31.2$ (c 0.32, CHCl₃) Source of chirality: (R)-phenylglycinol

 $\label{eq:C39} C_{39}H_{36}NO_{3}P \\ (R,4R_p,13S_p)-4-Di(p-methyloxylphenyl) phosphino-13-(4-phenyloxazoline-2-yl)[2.2] paracyclophane \\ (R,4R_p,13S_p)-4-Di(p-methyloxylphenylp$

Xun-Wei Wu, Ke Yuan, Wei Sun, Ming-Jie Zhang and Xue-Long Hou*

Ph R(C₆H₃(CF₃)₂-3,5)₂ Tetrahedron: Asymmetry 14 (2003) 107

 $[\alpha]_{D}^{20} = +10.6$ (*c* 0.355, CHCl₃) Source of chirality: (*R*)-phenylglycinol

 $\label{eq:c41} C_{41}H_{28}F_{12}NOP \\ (R,4R_p,13S_p)-4-Di(3,5-di(trifluoromethyl)phenyl)phosphino-13-(4-phenyloxazoline-2-yl)[2.2]paracyclophane$

Tetrahedron: Asymmetry 14 (2003) 127 Adrian M. Daly and Declan G. Gilheany* Ee >99% $[\alpha]_{D}^{20} = +10.0 \ (c \ 2, \ H_2O, \ lit. \ +10.1^{\circ})$ H_3N NH₃ Source of chirality: resolution HOOC COO--000 соон OH OH НŐ НÓ $C_{13}H_{24}N_2O_{12}$ (R,R)-(-)-trans-Cyclopentane-1,2-diamine di-(+)-tartrate

